organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Cyclohexylammonium acetate—*N*,*N*',*N*''tricyclohexylphosphoric triamide (1/1)

Mehrdad Pourayoubi,^a Mojtaba Keikha,^a* Arnold L. Rheingold^b and James A. Golen^b

^aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran, and ^bDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA Correspondence e-mail: Mojtaba.keikha@yahoo.com

, , ,

Received 7 June 2012; accepted 23 June 2012

Key indicators: single-crystal X-ray study; T = 90 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.119; data-to-parameter ratio = 18.1.

In the phosphoric triamide molecule of the title compound, $C_6H_{14}N^+ \cdot C_2H_3O_2^- \cdot C_{18}H_{36}N_3OP$, the P atom displays a distorted tetrahedral geometry and the cyclohexyl rings adopt chair conformations with the NH groups in equatorial positions. In the crystal, the cations, anions and phosphoric triamide molecules are linked *via* N-H···O hydrogen bonds into a two-dimensional array parallel to the *bc* plane. The O atom of the P(O) group acts as a double-hydrogen-bond acceptor.

Related literature

For background to phosphoric triamide molecules and for bond lengths and angles in related structures, see: Pourayoubi, Tarahhomi *et al.* (2012); Sabbaghi *et al.* (2011). For a definition of double-hydrogen-bond acceptor, see: Pourayoubi, Nečas & Negari (2012). For hydrolysis of compounds containing a C=N bond, see: Vollhardt & Schore (1998).

Experimental

Crystal data $C_6H_{14}N^+ \cdot C_2H_3O_2^- \cdot C_{18}H_{36}N_3OP$ $M_r = 500.69$

Monoclinic, $P2_1/c$ *a* = 12.7663 (8) Å b = 10.9011 (7) Å c = 21.2791 (13) Å $\beta = 104.523 (3)^{\circ}$ $V = 2866.7 (3) \text{ Å}^{3}$ Z = 4

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\rm min} = 0.957, T_{\rm max} = 0.975$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.119$ S = 0.975898 reflections 326 parameters 6 restraints 21979 measured reflections 5898 independent reflections 4702 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.043$

Mo $K\alpha$ radiation

 $0.35 \times 0.25 \times 0.20$ mm

 $\mu = 0.13 \text{ mm}^{-1}$

T = 90 K

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.47$ e Å⁻³ $\Delta \rho_{min} = -0.47$ e Å⁻³

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2N\cdotsO1^{i}$	0.87 (1)	2.14 (2)	3.0049 (18)	171 (2)
$N3-H3N\cdots O2^{ii}$	0.84 (1)	2.05 (2)	2.8837 (18)	173 (2)
$N1 - H1N \cdot \cdot \cdot O3$	0.86(1)	2.21 (2)	3.0394 (18)	163 (2)
N4−H4 <i>NC</i> ···O1 ⁱⁱⁱ	0.89(1)	2.05 (2)	2.9445 (18)	178 (2)
$N4 - H4NB \cdots O3^{iv}$	0.89 (2)	1.94 (2)	2.7666 (19)	155 (2)
$N4-H4NA\cdotsO2^{v}$	0.88 (2)	1.83 (2)	2.6992 (19)	169 (2)
Symmetry codes: (i)	-x -y -7; (ii) $-r y - 1$	$-7 \pm \frac{1}{12}$ (iii) $x \pm 1$	$v \pm 1$ z ; (iv)

Symmetry codes: (i) -x, -y, -z; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) x + 1, y + 1, z; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXTL* and *enCIFer* (Allen *et al.*, 2004).

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2071).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Bruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Pourayoubi, M., Nečas, M. & Negari, M. (2012). Acta Cryst. C68, 051-056.
- Pourayoubi, M., Tarahhomi, A., Karimi Ahmadabad, F., Fejfarová, K., van der Lee, A. & Dušek, M. (2012). Acta Cryst. C68, 0164–0169.
- Sabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F., Azarkamanzad, Z. & Ebrahimi Valmoozi, A. A. (2011). Acta Cryst. E67, o502.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vollhardt, K. P. C. & Schore, N. E. (1998). Organic Chemistry: Structure and Function, 3rd ed., ch. 19, p. 837. New York: W. H. Freeman Co.

supplementary materials

Acta Cryst. (2012). E68, o2266 [doi:10.1107/S1600536812028589]

Cyclohexylammonium acetate-*N*,*N'*,*N''*-tricyclohexylphosphoric triamide (1/1)

Mehrdad Pourayoubi, Mojtaba Keikha, Arnold L. Rheingold and James A. Golen

Comment

The X-ray determination of the title co-crystal, $P(O)(NHC_6H_{11})_3$, $(C_6H_{11}NH_3^+)(CH_3COO^-)$, (Fig. 1) was performed following to our previous study on synthesis and crystal structure determination of phosphoric triamide compounds (Pourayoubi, Tarahhomi *et al.*, 2012 and Sabbaghi *et al.*, 2011).

The cyclohexyl rings of phosphoric triamide molecule and also in the $C_6H_{11}NH_3^+$ cation have the chair conformation and the NH and NH_3^+ groups are in the equatorial position of the rings. In P(O)(NHC₆H₁₁)₃, the P atom exists in a distorted tetrahedral environment with the P—N bond lengths of 1.6315 (14) Å, 1.6440 (14) Å and 1.6463 (14) Å (for P1—N1). The P=O bond length and the P—N—C bond angles are standard for the phosphoric triamides (Pourayoubi, Tarahhomi *et al.*, 2012 and Sabbaghi *et al.*, 2011).

In the crystal, the oxygen atom of the P=O group acts as a double-hydrogen bond acceptor (Pourayoubi, Nečas & Negari, 2012), forming the P=O…[H—N][H—N] grouping with one N—H unit of a neighboring P(O)(NHC₆H₁₁)₃ molecule and one N—H unit of C₆H₁₁NH₃⁺ cation. Other N—H units of P(O)(NHC₆H₁₁)₃ and N—H units of C₆H₁₁NH₃⁺ are involved in the N—H···O hydrogen bonds with the O atoms of acetate anion. These N—H···O hydrogen bonds form a two-dimensional arrangement parallel to *bc* plane (Fig. 2).

Experimental

The title co-crystal was obtained fortuitously from a reaction between phosphoryl chloride and cyclohexylamine in acetonitrile at 273 K (4 h) and then the treatment of dibenzylamine at ice bath temperature. The presence of acetate anion is attributed to the hydrolysis of acetonitrile in acidic media of reaction (Vollhardt & Schore, 1998).

Refinement

Structure was solved by direct methods and all non-hydrogen atoms were refined by full matrix least squares on F². All nitrogen hydrogen atoms were found from a Fourier difference map and were refined isotropically with N—H distance of 0.87 (2) Å and $1.2U_{eq}$ of parent N atom. All other H atoms were placed in calculated positions and treated as riding on their parent atoms with C—H = 0.980 Å (CH₃), 0.990 Å (CH₂), and 1.000 Å (CH) with $1.5U_{eq}$ for methyl groups and $1.2U_{eq}$ for other H atoms.

Computing details

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and Mercury (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *enCIFer* (Allen *et al.*, 2004).

Figure 1

An *ORTEP*-style plot and atom labeling scheme for the title cocrystal. Displacement ellipsoids are given at 50% probability level and H atoms are drawn as small spheres of arbitrary radii.

Figure 2

A view of the two-dimensional arrangement with the N—H···O hydrogen bonds parallel to *bc* plane. The N–H···O hydrogen bonds are shown as dashed lines and the H atoms bound to C atoms have been omitted for clarity.

Cyclohexylammonium acetate-N,N',N''-tricyclohexylphosphoric triamide (1/1)

Crystal data	
$C_{6}H_{14}N^{+} \cdot C_{2}H_{3}O_{2}^{-} \cdot C_{18}H_{36}N_{3}OP$ $M_{r} = 500.69$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc $a = 12.7663 (8) \text{ Å}$ $b = 10.9011 (7) \text{ Å}$ $c = 21.2791 (13) \text{ Å}$ $\beta = 104.523 (3)^{\circ}$ $V = 2866.7 (3) \text{ Å}^{3}$ $7 = 4$	F(000) = 1104 $D_x = 1.160 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4565 reflections $\theta = 2.5-26.4^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 90 K Block, colourless $0.35 \times 0.25 \times 0.20 \text{ mm}$
Data collection Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004) $T_{min} = 0.957, T_{max} = 0.975$	21979 measured reflections 5898 independent reflections 4702 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 26.5^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -13 \rightarrow 16$ $k = -12 \rightarrow 13$ $l = -25 \rightarrow 26$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.119$	neighbouring sites
S = 0.97	H atoms treated by a mixture of independent
5898 reflections	and constrained refinement
326 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0636P)^2 + 1.5804P]$
6 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.47 \ { m e} \ { m \AA}^{-3}$
	$\Delta ho_{ m min} = -0.47 \ m e \ m \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
P1	0.03749 (3)	0.03310 (4)	0.110490 (19)	0.01413 (12)
O1	-0.03516 (9)	-0.06943 (10)	0.07941 (5)	0.0162 (3)
O2	-0.03699 (11)	0.56848 (11)	0.20581 (6)	0.0235 (3)
O3	0.03597 (10)	0.39451 (11)	0.18349 (6)	0.0226 (3)
N1	-0.03942 (11)	0.14670 (13)	0.12349 (6)	0.0162 (3)
H1N	-0.0051 (14)	0.2092 (15)	0.1427 (9)	0.019*
N2	0.12192 (11)	0.06325 (12)	0.06552 (7)	0.0153 (3)
H2N	0.0942 (14)	0.0571 (17)	0.0240 (7)	0.018*
N3	0.11772 (11)	0.01218 (13)	0.18250 (7)	0.0169 (3)
H3N	0.0902 (15)	0.0241 (18)	0.2140 (8)	0.020*
N4	0.90968 (12)	0.80813 (14)	0.19022 (7)	0.0175 (3)
H4NC	0.9261 (15)	0.8438 (17)	0.1561 (8)	0.021*
H4NB	0.9447 (14)	0.8426 (17)	0.2274 (8)	0.021*
H4NA	0.9338 (15)	0.7323 (14)	0.1928 (9)	0.021*
C1	0.21703 (13)	-0.06129 (15)	0.19470 (8)	0.0165 (3)
H1A	0.2472	-0.0528	0.1558	0.020*
C2	0.19909 (15)	-0.19790 (16)	0.20397 (9)	0.0223 (4)
H2B	0.1455	-0.2303	0.1656	0.027*
H2A	0.1701	-0.2100	0.2425	0.027*
C3	0.30587 (16)	-0.26732 (17)	0.21303 (9)	0.0277 (4)
H3B	0.2940	-0.3549	0.2216	0.033*
H3A	0.3301	-0.2625	0.1724	0.033*
C4	0.39406 (16)	-0.21611 (18)	0.26870 (9)	0.0279 (4)
H4A	0.3752	-0.2326	0.3103	0.033*
H4B	0.4632	-0.2582	0.2699	0.033*

C5	0.40827 (15)	-0.07895 (19)	0.26147 (9)	0.0281 (4)
H5A	0.4379	-0.0634	0.2235	0.034*
H5B	0.4608	-0.0473	0.3005	0.034*
C6	0.30118 (14)	-0.01101 (17)	0.25267 (9)	0.0237 (4)
H6A	0.2747	-0.0201	0.2924	0.028*
H6B	0.3124	0.0775	0.2461	0.028*
C7	0.21298 (13)	0.14884 (15)	0.08461 (8)	0.0156 (3)
H7A	0.2431	0.1405	0.1325	0.019*
C8	0.30137 (13)	0.11132 (16)	0.05214 (8)	0.0192 (4)
H8A	0.2731	0.1162	0.0044	0.023*
H8B	0.3223	0.0251	0.0635	0.023*
С9	0.40097 (15)	0.19339 (17)	0.07308 (10)	0.0262 (4)
H9A	0.4355	0.1792	0.1196	0.031*
H9B	0.4538	0.1712	0.0480	0.031*
C10	0.37214 (15)	0.32891 (17)	0.06253 (9)	0.0251 (4)
H10A	0.4371	0.3793	0.0810	0.030*
H10B	0.3485	0.3460	0.0154	0.030*
C11	0.28244 (15)	0.36423 (16)	0.09441 (9)	0.0244 (4)
H11A	0.2623	0.4511	0.0845	0.029*
H11B	0.3090	0.3560	0.1421	0.029*
C12	0.18287 (14)	0.28355 (15)	0.07060 (9)	0.0208 (4)
H12A	0.1533	0.2954	0.0233	0.025*
H12B	0.1264	0.3074	0.0928	0.025*
C13	-0.13969 (13)	0.17719 (15)	0.07496 (8)	0.0165 (3)
H13A	-0.1773	0.0984	0.0591	0.020*
C14	-0.12088(14)	0.24561 (16)	0.01597 (8)	0.0181 (4)
H14A	-0.0792	0.3214	0.0306	0.022*
H14B	-0.0775	0.1935	-0.0061	0.022*
C15	-0.22712(15)	0.27884 (16)	-0.03186(8)	0.0226 (4)
H15A	-0.2644	0.2028	-0.0508	0.027*
H15B	-0.2119	0.3280	-0.0677	0.027*
C16	-0.30106 (15)	0.35149 (18)	0.00041 (9)	0.0256 (4)
H16A	-0.3711	0.3664	-0.0313	0.031*
H16B	-0.2677	0.4320	0.0148	0.031*
C17	-0.32031(15)	0.28178 (18)	0.05861 (9)	0.0275 (4)
H17A	-0.3604	0.2052	0.0435	0.033*
H17B	-0.3651	0.3324	0.0804	0.033*
C18	-0.21338 (14)	0.25052 (16)	0.10695 (8)	0.0207 (4)
H18A	-0.1765	0.3273	0.1251	0.025*
H18B	-0.2281	0.2024	0.1433	0.025*
C19	0.00103 (13)	0.50061 (15)	0.16902 (8)	0.0170 (3)
C20	0.00121 (17)	0.55092 (16)	0.10254 (9)	0.0251 (4)
H20A	0.0599	0.5127	0.0874	0.038*
H20B	0.0121	0.6399	0.1054	0.038*
H20C	-0.0682	0.5326	0.0719	0.038*
C21	0.79125 (14)	0.81068 (15)	0.18393 (8)	0.0184 (4)
H21A	0.7770	0.7760	0.2245	0.022*
C22	0.73229 (14)	0.73242 (16)	0.12695 (8)	0.0224 (4)
H22A	0.7564	0.6462	0.1344	0.027*

H22B	0.7505	0.7613	0.0869	0.027*	
C23	0.61009 (15)	0.73912 (18)	0.11812 (9)	0.0284 (4)	
H23A	0.5911	0.6999	0.1558	0.034*	
H23B	0.5736	0.6929	0.0787	0.034*	
C24	0.56931 (16)	0.87123 (19)	0.11199 (10)	0.0323 (5)	
H24A	0.5791	0.9072	0.0711	0.039*	
H24B	0.4911	0.8723	0.1102	0.039*	
C25	0.63031 (15)	0.94796 (19)	0.16928 (10)	0.0302 (4)	
H25A	0.6056	1.0342	0.1629	0.036*	
H25B	0.6137	0.9174	0.2095	0.036*	
C26	0.75158 (15)	0.94279 (16)	0.17677 (9)	0.0242 (4)	
H26A	0.7890	0.9905	0.2155	0.029*	
H26B	0.7691	0.9802	0.1383	0.029*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
P1	0.0168 (2)	0.0128 (2)	0.0132 (2)	0.00017 (16)	0.00465 (16)	0.00000 (15)
01	0.0194 (6)	0.0131 (6)	0.0164 (6)	-0.0014 (4)	0.0051 (5)	-0.0006 (4)
O2	0.0365 (8)	0.0165 (6)	0.0221 (6)	0.0046 (5)	0.0157 (6)	0.0018 (5)
O3	0.0317 (7)	0.0137 (6)	0.0225 (6)	0.0031 (5)	0.0068 (5)	0.0004 (5)
N1	0.0182 (7)	0.0144 (7)	0.0153 (7)	-0.0001 (6)	0.0030 (6)	-0.0026 (5)
N2	0.0176 (7)	0.0156 (7)	0.0131 (7)	-0.0019 (5)	0.0043 (6)	-0.0006 (5)
N3	0.0193 (7)	0.0189 (7)	0.0140 (7)	0.0030 (6)	0.0068 (6)	0.0000 (6)
N4	0.0215 (8)	0.0137 (7)	0.0184 (7)	0.0004 (6)	0.0071 (6)	0.0008 (6)
C1	0.0167 (8)	0.0169 (8)	0.0168 (8)	0.0018 (6)	0.0060 (7)	0.0011 (6)
C2	0.0246 (9)	0.0192 (9)	0.0220 (9)	0.0002 (7)	0.0036 (7)	0.0040 (7)
C3	0.0324 (11)	0.0225 (10)	0.0272 (10)	0.0075 (8)	0.0056 (8)	0.0055 (8)
C4	0.0250 (10)	0.0378 (11)	0.0216 (9)	0.0108 (8)	0.0073 (8)	0.0062 (8)
C5	0.0204 (9)	0.0377 (11)	0.0245 (10)	0.0018 (8)	0.0025 (8)	-0.0001 (8)
C6	0.0234 (9)	0.0258 (10)	0.0205 (9)	-0.0006 (8)	0.0032 (7)	-0.0031 (7)
C7	0.0168 (8)	0.0140 (8)	0.0159 (8)	-0.0015 (6)	0.0039 (6)	-0.0010 (6)
C8	0.0187 (9)	0.0157 (8)	0.0238 (9)	0.0004 (7)	0.0064 (7)	-0.0004 (7)
C9	0.0189 (9)	0.0248 (10)	0.0355 (11)	-0.0012 (7)	0.0081 (8)	-0.0027 (8)
C10	0.0242 (10)	0.0206 (9)	0.0317 (10)	-0.0073 (7)	0.0095 (8)	-0.0035 (8)
C11	0.0302 (10)	0.0162 (9)	0.0285 (10)	-0.0021 (7)	0.0107 (8)	-0.0015 (7)
C12	0.0233 (9)	0.0147 (8)	0.0266 (9)	0.0015 (7)	0.0106 (8)	0.0019 (7)
C13	0.0180 (8)	0.0137 (8)	0.0179 (8)	0.0004 (6)	0.0046 (7)	-0.0001 (6)
C14	0.0205 (9)	0.0163 (8)	0.0183 (8)	0.0003 (7)	0.0061 (7)	-0.0006 (7)
C15	0.0273 (10)	0.0194 (9)	0.0198 (9)	-0.0017 (7)	0.0033 (7)	0.0028 (7)
C16	0.0213 (9)	0.0260 (10)	0.0284 (10)	0.0053 (7)	0.0040 (8)	0.0063 (8)
C17	0.0209 (10)	0.0301 (11)	0.0335 (10)	0.0042 (8)	0.0106 (8)	0.0064 (8)
C18	0.0224 (9)	0.0189 (9)	0.0231 (9)	0.0012 (7)	0.0103 (7)	0.0021 (7)
C19	0.0187 (8)	0.0143 (8)	0.0182 (8)	-0.0031 (6)	0.0050 (7)	-0.0007 (6)
C20	0.0401 (11)	0.0169 (9)	0.0217 (9)	0.0004 (8)	0.0141 (8)	0.0000(7)
C21	0.0196 (9)	0.0168 (8)	0.0198 (8)	-0.0005 (7)	0.0069 (7)	0.0013 (6)
C22	0.0264 (10)	0.0196 (9)	0.0209 (9)	-0.0018 (7)	0.0056 (7)	0.0009 (7)
C23	0.0238 (10)	0.0326 (11)	0.0269 (10)	-0.0040 (8)	0.0031 (8)	0.0006 (8)
C24	0.0228 (10)	0.0390 (12)	0.0334 (11)	0.0046 (8)	0.0041 (8)	0.0048 (9)
C25	0.0251 (10)	0.0309 (11)	0.0349 (11)	0.0075 (8)	0.0080 (8)	0.0002 (8)

C26	0.0268 (10)	0.0185 (9)	0.0280 (10) 0	.0029 (7)	0.0079 (8)	-0.0001 (7)
Geomet	ric parameters (À	Î, °)				
P1-01		1.4964 (1	2) C10-	-H10B		0.9900
P1—N3	6	1.6315 (1	4) C11-			1.524 (2)
P1—N2		1.6440 (1	4) C11-	-H11A		0.9900
P1—N1		1.6463 (1	4) C11-	-H11B		0.9900
02-C1	9	1 260 (2)	C12-	-H12A		0.9900
03 - C1	9	1.200(2) 1.250(2)	C12-	-H12B		0.9900
N1-C1	3	1.200(2) 1 467 (2)	C13-			1 519 (2)
N1—H1	IN	0.857 (14) C13-			1.530 (2)
N2-C7	7	1 466 (2)) C13	H13A		1.0000
N2_H2	2N	0.868 (14	C14			1.5000
N3_C1		1467(2)) C14-	H14A		0.9900
N3 H3	2NI	0.841(14)) $C14$	H14R		0.9900
N4_ C2	21	1 /18/ (2)	C14-	C16		1 521 (3)
N4-02	1NC	1.404(2)) C15-			0.0000
IN4—П4	HNC AND	0.094 (14	C15			0.9900
IN4—П4		0.888 (13) $C13$	—пізь С17		0.9900
N4 - H4	+INA	0.879 (15) C16-	-CI/		1.525(5)
)	1.520 (2)	C10-	HI6A		0.9900
CI - C2		1.527(2)	C16-	-H16B		0.9900
CI—HI	IA	1.0000	C1/-			1.527 (3)
C2—C3	5	1.529 (3)	C17-	—HI/A		0.9900
C2—H2	2B	0.9900	CI7-	—HI/B		0.9900
C2—H2	2A	0.9900	C18-			0.9900
C3—C4	-	1.521 (3)	C18-	-H18B		0.9900
С3—Н3	BB	0.9900	C19-	C20		1.518 (2)
С3—Н3	3A	0.9900	C20-	-H20A		0.9800
C4—C5	5	1.519 (3)	C20-	—H20B		0.9800
C4—H4	1A	0.9900	C20-	—H20C		0.9800
C4—H4	4B	0.9900	C21-	—C22		1.519 (2)
C5—C6	5	1.525 (3)	C21-	C26		1.521 (2)
С5—Н5	5A	0.9900	C21-	-H21A		1.0000
С5—Н5	5B	0.9900	C22-	C23		1.526 (3)
С6—Н6	бA	0.9900	C22-	—H22A		0.9900
С6—Н6	6B	0.9900	C22-	—H22B		0.9900
С7—С8	3	1.519 (2)	C23-	—C24		1.526 (3)
C7—C1	2	1.528 (2)	C23-	—H23A		0.9900
С7—Н7	7A	1.0000	C23-	—H23B		0.9900
C8—C9)	1.527 (2)	C24-	C25		1.522 (3)
С8—Н8	3A	0.9900	C24-	-H24A		0.9900
С8—Н8	3B	0.9900	C24-	—H24B		0.9900
C9—C1	0	1.525 (3)	C25-	—C26		1.517 (3)
С9—Н9	9A	0.9900	C25-	—H25A		0.9900
С9—Н9)B	0.9900	C25-	—H25B		0.9900
C10—C	211	1.520 (2)	C26-	—H26A		0.9900
С10—Н	I10A	0.9900	C26-	—H26B		0.9900
O1—P1	—N3	118.96 (7) C11-			109.97 (14)

supplementary materials

O1—P1—N2	108.44 (7)	C11—C12—H12A	109.7
N3—P1—N2	103.05 (7)	C7—C12—H12A	109.7
O1—P1—N1	107.84 (7)	C11—C12—H12B	109.7
N3—P1—N1	101.99 (7)	C7—C12—H12B	109.7
N2—P1—N1	116.95 (7)	H12A—C12—H12B	108.2
C13—N1—P1	120.26 (11)	N1—C13—C18	109.44 (13)
C13—N1—H1N	114.0 (13)	N1—C13—C14	113.53 (13)
P1—N1—H1N	115.0 (13)	C18—C13—C14	110.69 (14)
C7—N2—P1	123.78 (11)	N1—C13—H13A	107.7
C7—N2—H2N	115.0 (12)	C18—C13—H13A	107.7
P1—N2—H2N	114.7 (12)	C14—C13—H13A	107.7
C1—N3—P1	123.63 (11)	C15—C14—C13	111.59 (14)
C1—N3—H3N	117.3 (13)	C15—C14—H14A	109.3
P1—N3—H3N	116.0 (13)	C13—C14—H14A	109.3
C21—N4—H4NC	111.1 (12)	C15—C14—H14B	109.3
C21—N4—H4NB	110.3 (12)	C13—C14—H14B	109.3
H4NC—N4—H4NB	111.7 (18)	H14A—C14—H14B	108.0
C21—N4—H4NA	110.9 (13)	C14—C15—C16	111.84 (15)
H4NC—N4—H4NA	108.0 (17)	C14—C15—H15A	109.2
H4NB—N4—H4NA	104.6 (18)	C16—C15—H15A	109.2
N3—C1—C6	110.51 (14)	C14—C15—H15B	109.2
N3—C1—C2	113.85 (14)	C16—C15—H15B	109.2
C6—C1—C2	110.19 (14)	H15A—C15—H15B	107.9
N3—C1—H1A	107.3	C15—C16—C17	110.59 (15)
C6—C1—H1A	107.3	C15—C16—H16A	109.5
C2—C1—H1A	107.3	C17—C16—H16A	109.5
C1—C2—C3	109.95 (15)	C15—C16—H16B	109.5
C1—C2—H2B	109.7	C17—C16—H16B	109.5
С3—С2—Н2В	109.7	H16A—C16—H16B	108.1
C1—C2—H2A	109.7	C16—C17—C18	111.06 (15)
C3—C2—H2A	109.7	C16—C17—H17A	109.4
H2B—C2—H2A	108.2	C18—C17—H17A	109.4
C4—C3—C2	112.27 (16)	C16—C17—H17B	109.4
С4—С3—Н3В	109.2	C18—C17—H17B	109.4
С2—С3—Н3В	109.2	H17A—C17—H17B	108.0
С4—С3—НЗА	109.2	C13—C18—C17	111.40 (15)
С2—С3—НЗА	109.2	C13—C18—H18A	109.3
НЗВ—СЗ—НЗА	107.9	C17—C18—H18A	109.3
C5—C4—C3	111.49 (15)	C13—C18—H18B	109.3
C5—C4—H4A	109.3	C17—C18—H18B	109.3
C3—C4—H4A	109.3	H18A—C18—H18B	108.0
C5—C4—H4B	109.3	O3—C19—O2	124.04 (15)
C3—C4—H4B	109.3	O3—C19—C20	118.69 (15)
H4A—C4—H4B	108.0	O2—C19—C20	117.26 (15)
C4—C5—C6	111.38 (16)	C19—C20—H20A	109.5
C4—C5—H5A	109.4	С19—С20—Н20В	109.5
С6—С5—Н5А	109.4	H20A—C20—H20B	109.5
C4—C5—H5B	109.4	С19—С20—Н20С	109.5
С6—С5—Н5В	109.4	H20A—C20—H20C	109.5

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H5A—C5—H5B	108.0	H20B-C20-H20C	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C1—C6—C5	110.73 (15)	N4—C21—C22	110.56 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С1—С6—Н6А	109.5	N4—C21—C26	109.43 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—С6—Н6А	109.5	C22—C21—C26	111.46 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C6—H6B	109.5	N4—C21—H21A	108.4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С5—С6—Н6В	109.5	C22—C21—H21A	108.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H6A—C6—H6B	108.1	C26—C21—H21A	108.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C7—C8	109.29 (13)	C21—C22—C23	110.98 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C7—C12	114.46 (14)	C21—C22—H22A	109.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C7—C12	110.43 (13)	C23—C22—H22A	109.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C7—H7A	107.5	C21—C22—H22B	109.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С8—С7—Н7А	107.5	C23—C22—H22B	109.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С12—С7—Н7А	107.5	H22A—C22—H22B	108.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C8—C9	111.62 (14)	C22—C23—C24	111.85 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С7—С8—Н8А	109.3	С22—С23—Н23А	109.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С9—С8—Н8А	109.3	C24—C23—H23A	109.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С7—С8—Н8В	109.3	С22—С23—Н23В	109.2
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С9—С8—Н8В	109.3	C24—C23—H23B	109.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H8A—C8—H8B	108.0	H23A—C23—H23B	107.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—C9—C8	111.84 (15)	C25—C24—C23	110.81 (16)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С10—С9—Н9А	109.2	C25—C24—H24A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С8—С9—Н9А	109.2	C23—C24—H24A	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С10—С9—Н9В	109.2	C25—C24—H24B	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С8—С9—Н9В	109.2	C23—C24—H24B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H9A—C9—H9B	107.9	H24A—C24—H24B	108.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C10—C9	111.14 (15)	C26—C25—C24	111.55 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C10—H10A	109.4	C26—C25—H25A	109.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—H10A	109.4	C24—C25—H25A	109.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C10—H10B	109.4	C26—C25—H25B	109.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—H10B	109.4	C24—C25—H25B	109.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H10A—C10—H10B	108.0	H25A—C25—H25B	108.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C12	111.37 (15)	C25—C26—C21	110.54 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—C11—H11A	109.4	C25—C26—H26A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—H11A	109.4	C21—C26—H26A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—C11—H11B	109.4	C25—C26—H26B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—H11B	109.4	C21—C26—H26B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H11A—C11—H11B	108.0	H26A—C26—H26B	108.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—P1—N1—C13	-39.88 (14)	C8—C9—C10—C11	53.0 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—P1—N1—C13	-165.92 (12)	C9—C10—C11—C12	-55.6 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—P1—N1—C13	82.56 (14)	C10—C11—C12—C7	58.17 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—P1—N2—C7	-172.79 (12)	N2—C7—C12—C11	178.05 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—P1—N2—C7	-45.84 (14)	C8—C7—C12—C11	-58.12 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—P1—N2—C7	65.08 (15)	P1—N1—C13—C18	160.06 (12)
N2—P1—N3—C1 $-44.69 (14)$ N1—C13—C14—C15 $-178.14 (13)$ N1—P1—N3—C1 $-166.34 (13)$ C18—C13—C14—C15 $-54.60 (19)$ P1—N3—C1—C6148.80 (13)C13—C14—C15—C1654.91 (19)P1—N3—C1—C2 $-86.58 (17)$ C14—C15—C16—C17 $-55.3 (2)$	O1—P1—N3—C1	75.27 (15)	P1—N1—C13—C14	-75.72 (16)
N1—P1—N3—C1-166.34 (13)C18—C13—C14—C15-54.60 (19)P1—N3—C1—C6148.80 (13)C13—C14—C15—C1654.91 (19)P1—N3—C1—C2-86.58 (17)C14—C15—C16—C17-55.3 (2)	N2—P1—N3—C1	-44.69 (14)	N1-C13-C14-C15	-178.14 (13)
P1—N3—C1—C6 148.80 (13) C13—C14—C15—C16 54.91 (19) P1—N3—C1—C2 -86.58 (17) C14—C15—C16—C17 -55.3 (2)	N1—P1—N3—C1	-166.34 (13)	C18—C13—C14—C15	-54.60 (19)
P1—N3—C1—C2 -86.58 (17) C14—C15—C16—C17 -55.3 (2)	P1—N3—C1—C6	148.80 (13)	C13—C14—C15—C16	54.91 (19)
	P1—N3—C1—C2	-86.58 (17)	C14—C15—C16—C17	-55.3 (2)

N2 C1 C2 C2	177.02 (14)	016 016 017 010	55.0 (2)
N3-C1-C2-C3	177.23 (14)	C15—C16—C17—C18	55.9 (2)
C6—C1—C2—C3	-57.97 (18)	N1-C13-C18-C17	-178.57 (14)
C1—C2—C3—C4	55.5 (2)	C14—C13—C18—C17	55.56 (19)
C2—C3—C4—C5	-53.4 (2)	C16—C17—C18—C13	-56.7 (2)
C3—C4—C5—C6	53.4 (2)	N4—C21—C22—C23	-177.38 (14)
N3—C1—C6—C5	-174.36 (14)	C26—C21—C22—C23	-55.43 (19)
C2-C1-C6-C5	58.95 (19)	C21—C22—C23—C24	54.4 (2)
C4—C5—C6—C1	-56.6 (2)	C22—C23—C24—C25	-54.3 (2)
P1—N2—C7—C8	152.71 (12)	C23—C24—C25—C26	55.5 (2)
P1—N2—C7—C12	-82.85 (17)	C24—C25—C26—C21	-56.7 (2)
N2-C7-C8-C9	-177.01 (14)	N4—C21—C26—C25	179.20 (14)
С12—С7—С8—С9	56.22 (19)	C22—C21—C26—C25	56.6 (2)
C7—C8—C9—C10	-53.8 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N2—H2N···O1 ⁱ	0.87(1)	2.14 (2)	3.0049 (18)	171 (2)
N3—H3 <i>N</i> ···O2 ⁱⁱ	0.84 (1)	2.05 (2)	2.8837 (18)	173 (2)
N1—H1 <i>N</i> ···O3	0.86(1)	2.21 (2)	3.0394 (18)	163 (2)
N4—H4 <i>NC</i> ···O1 ⁱⁱⁱ	0.89 (1)	2.05 (2)	2.9445 (18)	178 (2)
N4—H4 <i>NB</i> ····O3 ^{iv}	0.89 (2)	1.94 (2)	2.7666 (19)	155 (2)
N4—H4 NA ····O2 ^v	0.88 (2)	1.83 (2)	2.6992 (19)	169 (2)

Symmetry codes: (i) -*x*, -*y*, -*z*; (ii) -*x*, *y*-1/2, -*z*+1/2; (iii) *x*+1, *y*+1, *z*; (iv) -*x*+1, *y*+1/2, -*z*+1/2; (v) *x*+1, *y*, *z*.